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Coupling particles and fields in a diffusive hybrid model
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A general scheme to patch together discrete and continuous descriptions of diffusion within the same
physical space is studied. In the discrete description, diffusion is described by microscopic random walkers on
a lattice; in the continuous description, diffusion is described through the macroscopic diffusion equation. The
coupling scheme is based on the mutual exchange of mass flux across the discrete-continuous interface.
Detailed tests of the scheme, coupling particle, and field descriptions are particularly illustrative for the
diffusion problem. Both the nonequilibrium transport behavior and the equilibrium fluctuations of the com-
bined discrete-continuous system are in agreement with theoretical predictions.
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I. INTRODUCTION

The diffusion equation is at the heart of so many physi
descriptions that it is hard to list them all. Physical quantit
such as heat in a solid, momentum in a fluid, or a pollutan
a gas may all be described by the diffusion equation. T
same can be said for the probability of finding a grain
pollen undergoing Brownian motion in space. In fact,
types of random microscopic motion with a finite step leng
and a finite correlation time satisfy the diffusion equation
the macroscopic limit. In that limit, i.e., on spatial scal
larger than the correlation length of the underlying mic
scopic processes, one may expand the current of the rele
quantity in a series of the density gradient of the same qu
tity to obtain Fick’s law. Then the diffusion equation follow
as a statement of conservation of the quantity at hand.

It is precisely when the physical processes produc
structure at the scale of the microscopic correlation len
that one runs into trouble with the diffusion equation. In th
case there might not exist a simple macroscopic descript
and if it does, it will not be linear in the density gradient. F
concreteness one may think of the heat transport aroun
fracture formed within a solid under stress. Here a h
source ~the propagating fracture! is localized over a few
atomic lengths, and thus is singular on the macroscale. W
the diffusion equation in this case may still describe
large-scale transport of heat, it does not describe the pa
of local transport. Local heat flow may, however, influen
the further growth of the fracture, and thus be of interest

Indeed, there exist processes on macroscopic length s
that, for fundamental reasons, cannot be described by
tinuum theory; they must be treated on the discrete atom
scale. Famous examples of such processes include the
ing contact line between two immiscible liquids moving on
substrate@1#, the breakup and merging of fluid droplets@2#,
strong shear localization, dynamic melting processes@3#, and
the evolution of a fracture tip@4–6#. For a modeling of such
processes it is of fundamental interest to combine a local
detailed particle description with a continuous field descr
tion of greater numerical economy. In this paper we int
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duce a simple coupling scheme for this purpose in the cas
diffusion. It represents a highly simplified version of the h
drodynamic coupling scheme introduced in Ref.@7#. Con-
trary to existing coupling schemes@8–10#, the present
scheme and that in Ref.@7#, are based entirely on the ex
change offluxes, which is the most direct and general way
enforce the pertinent conservation laws.

Diffusive processes may require atomistic or discrete
scriptions in cases where fluctuations are important, suc
in small scale deposition-dissolution processes or when
dients become large and Fick’s law breaks down. More g
erally, fluctuations arise naturally whenever a particle d
scription is required. However, in existing continuum
particle hybrid models@8–10#, the focus is on theaverage
behavior. The main virtue of the present paper is an anal
of the fluctuations. The leading question is to what extent
continuum acts as a statistical mechanical reservoir for
particle system. We quantify the answer to this question
means of both analytical arguments and measurements,
we demonstrate that the agreement between the two is
sonable. The main result is that, depending on the coup
to the continuum, the size of the particle fluctuations int
polates between those of an open system and those
closed system. However, in order to make an analysis of
fluctuatingbehavior of the model meaningful, we first chec
that it has the correctaveragebehavior. This is done in a
sequence of simple test cases in the beginning of the pa

Interestingly, hybrid descriptions may also be useful in t
opposite application where particles are used in the low re
lution region and a continuum description is used where h
resolution is required. This is the case in a recent work
Plapp and Karma@11#, who studied dendritic growth on
scales where fluctuations are not considered. The coup
scheme used in this study derives the particle boundary c
dition from the continuum flux, whereas the continuu
boundary condition is derived from the particledensity.
Hence flux continuity is not obvious from this scheme.

Particle models that seek to bridge the gap between
croscopic and macroscopic scales do exist—most notably
hydrodynamic models known as dissipative particle dyna
©2001 The American Physical Society02-1
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ics @12,13#. Even though these models have recently evolv
to include an adaptive range of particle scales@14,15#, they
remain mesoscopic in the sense that their particles are co
grained representatives of the underlying microdynamics

II. MODEL

To describe a diffusive process on a microscopic scale
consider a set of random walkers moving on the sites o
one-dimensional lattice. The random walkers move w
equal probability to the left or the right, hopping from on
site to a neighboring site during each time step. This discr
microscopic description is coupled to a continuous, mac
scopic description, obtained by solving a discretized vers
of the diffusion equation

]rc

]t
5D¹2rc ~1!

on a one-dimensional array of nodes. Hererc is the density
of random walkers or particles on a continuum node, andD
is the macroscopic diffusion constant. The two descriptio
overlap to some extent, in the sense that some of the
tinuum nodes and some sites of the particle lattice cover
same region of space. This is shown in Fig. 1. One c
tinuum node corresponds toW.1 lattice sites of unit length
on which the particles move. As units we shall take the
tice constant of the particle lattice and the time step of
particles, i.e., every particle moves a unit length in a u
time. The lattice constant of the continuum lattice~on which
we discretize the diffusion equation! is thereforeW, which is
the number of particle step lengths per continuum node.
densityrc is defined on the continuum nodes, and the p
ticle densityrp is the number of particles per site on th
more fine grained lattice. In equilibrium the averages ofrp
andrc will be equal.

The general idea of particle-continuum hybrid models
to resolve finer space and time scales in the particle sys
than in the continuum, which thus is taken to represen
coarse grained description of the particle system. One t
step in the iteration of Eq.~1! thus corresponds tot micro-
scopic time steps. Since particle time steps are taken to h
a unit length, the time step of Eq.~1! is simply t. In fact a
main virtue of the coupling scheme is that it allows th
separation of both the space and time scales of the
domains.

Since the particle system has intrinsic fluctuations
would appear that one would need to add a fluctuating t

FIG. 1. Sketch of the coupling scheme of the hybrid model
the special case where there are nine sites on the continuum la
andW56 particle sites per continuum site. The particle system~P!
is coupled to the continuum~C! at the location of the right arrow
and the continuum to the particles at the left arrow.
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to the above diffusion equation to obtain a fully consiste
picture. It is clearly possible to do this along the lines
fluctuating hydrodynamics@18#. However, the main effect o
the continuum on the particle number fluctuations is link
to the averaging of the particles that is needed in the c
pling region. Moreover, the general idea is to link a fine sc
description~the particles! to a region of coarser scale whe
fluctuations in general play a less important role. This w
the view taken in previous studies

The basic idea of the coupling scheme is to impose
flux of the particle system as a boundary condition on
continuum at one location, and to do the reverse at ano
location. This is illustrated in a particular case in Fig.
where an overlap zone is defined between sites 4 and 6
site 4 the particle flux is imposed on the continuum, and
the rightmost site on the particle system the flux of the c
tinuum system is imposed on the particle system. Sites
are represented by the particle system only, and the c
tinuum equation is not updated there.

Figure 1 shows where these fluxes are imposed. The m
flux D¹r in the continuum, where¹r is evaluated from
sites 5 and 6, is imposed as a source term on the sec
outermost site of the particle lattice~at the outermost site
which is not shown the particles just bounce back to the le!.

Once the continuum flux is computed it is imposed a
particle source which is constant over thet particle updates.
Then, at the last of these updates, the particle fluxj p is
averaged overW sites, and used to define the source on
continuum. More precisely,D¹rc particles are added to th
particle system every update. In doing this,D¹rc is rounded
to the closest integer.

Correspondingly, the continuum receives a massj pt by
adding this value atrc at the site of the leftmost arrow o
Fig. 1, i.e., site 4. The particle fluxj p is measured simply as
the number of right moving particles minus the number
left moving particles at the given time.

Of course, the flux boundary condition on the continuu
could also have been imposed as a condition on the con
tration gradient. However, since this condition represent
noise source that imposes variations on all waveleng
down to the lattice scale, it does not conserve mass~the
integrated concentration! to a high accuracy. This wa
checked in independent simulations using the continu
equation solver and a random boundary condition. In th
simulations the imposition of a source term conserves m
to a higher accuracy than the imposition of a concentrat
gradient.

As usual in the numerical treatment of differential equ
tions, the gradient of the density must be expressed a
difference across nodes. In particular, to express the c
tinuum flux density the difference gradient

“rc'
rc~x6!2rc~x5!

W
, ~2!

where x5 and x6 are shown in the figure, should be use
Note that since the site of the particle source is located r
betweenx5 andx6 the difference expression above is really

ice
2-2



n.
e
it

t

.

th
q

lie
um

um

ns
ic
c
t
—

ar

o
a-
tic
e

u
e
m

o
d
on
ck
n

iv
te

et
h
o
et

file
n

uns
and
are
ry
ing

dif-

um
r-

of,
ro-
ined
ered
ally
re

nal

he
in-
ver a

f
ce

COUPLING PARTICLES AND FIELDS IN A . . . PHYSICAL REVIEW E64 066302
centereddifference. The discrete value of“rc then defines
the flux density at the boundary of the continuous domai

However, Eq.~2! does not prevent discontinuities at th
discrete-continuous interface. Indeed, a configuration w
rp5const everywhere in the discrete domain, andrc
5const everywhere in the continuous domain, would lead
vanishing averaged fluxes, even forrpÞrc . Equilibration is
enforced if a hybrid gradient“8 of the form

“8rc'
rc~x6!2rp~x5!

W
~3!

is employed to define the fluxD“rc into the particle system
In Eq. ~3!, the macroscopic continuum density isreplacedby
the corresponding microscopic density characterizing
nodex5. The imposed flux of random walkers, based on E
~3!, enforces that, on average,rp5rc at the discrete-
continuous interface. When the coupling scheme is app
to a physical system involving both mass and moment
transport@7#, one may do without this device and use Eq.~2!,
as density mismatch at the interface will lead to moment
and mass flux exchange and equilibration by default.

As an illustration of the fact that continuum descriptio
generally capture only the large scale behavior of the part
system, note that the average particle evolution is not exa
described by Eq.~1!. Equation~1! only contains the lowes
order in the gradient terms. In fact, it is generally possible
for instance by applying a simple version of the stand
Chapman-Enskog expansion technique@16,17#—to show
that the diffusion equation contains correction terms
higher order in¹2, that become important when density gr
dients are large. When gradients are small on the lat
scale, or the scale of the mean free path, Fick’s law is g
erally valid to an excellent approximation.

III. SIMULATIONS AND RESULTS

The simulations focus on two main questions.~i! Is the
time-dependent mass transport across the discrete-contin
interface continuous and smooth?~ii ! In what sense does th
continuum domain represent a continued thermodyna
bath for the discrete system of random walkers?

If not stated otherwise,W520 lattice sites were taken t
correspond to one continuum node, and between five an
random walkers were employed per lattice site. The c
tinuum description was evolved by means of a Cran
Nicholson finite difference scheme, using the diffusion co
stantD50.5 lattice constant2/time step.D is then equal to
the diffusivity of a single random walker.

A. Transport properties and the continuity of the discrete-
continuous interface

Is the coupling mechanism able to propagate the diffus
current continuously across the discrete-continuous in
face? Figure 2 shows results from simulations intended
test the transport properties of the hybrid model. A discr
domain containing 210 sites was patched together wit
continuum extending on 33 nodes, also counting the leftm
sites that are not updated. The continuum time step was s
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t550 ~in units of microscopic time steps!, and each run was
over 30.000 particle time steps. A Gaussian density pro
was imposed initially, and left to relax. Averaging over a
ensemble of 100 independent runs, the density profile r
continuously across the discrete-continuous interface,
the microscopic fluctuations in the discrete domain
barely visible. Note that the microscopic densities of eve
W sites were averaged to yield one data point, correspond
to one node position.

Figure 3 shows the same data as Fig. 2 but only the
ference Dr(x/W)5r(x/W)2r(322x/W). Each run con-
served total mass within 0.5%. The main particle-continu
discontinuity is present in the initial configuration. The pa
ticle system was initialized with steps of widthW and con-
stant density.

For comparison with the case where mass flows out
and not into, the particle system, Fig. 4 shows density p
files measured during a single run, using the same comb
discrete-continuous system. Two Gaussian profiles, cent
at the extreme ends of the domains, were imposed initi
and left to relax. Here the microscopic fluctuations a

FIG. 2. A relaxing Gaussian density profile in a one-dimensio
box of size 32W, shown at six different timest50, 6, 12, 18, 24,
and 303103 particle time steps. The particle domain covers t
leftmost x/W<10 positions. The data were averaged over 100
dependent runs, and the particle density data were averaged o
space ofW sites at each node position.

FIG. 3. The differenceDr(x/W)5r(x/W)2r(322x/W) as a
function of x, where r(x) is shown in Fig. 2. The sequence o
symbolsd, h, L, n, 1, ands corresponds to the time sequen
t50, 6, 12, 18, 24, and 303103 particle time steps.
2-3
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clearly visible, in sharp contrast to the smooth profile o
tained in the continuous domain.

In the simulations illustrated in Figs. 2 and 4, the init
state was symmetric around the center of the hybrid syst
and the extreme end boundary conditions were reflect
Hence density profiles, which initially were symmetric
space, should preserve symmetry. The coupling scheme
be tested by directly comparing the left- and right-hand p
tions of the graph. These were indeed found to evolve s
metrically, up to the effect of microscopic fluctuations. As
independent check, it was verified that the microscopic d
sity profile of random walkers alone indeed evolved with
diffusivity of D50.5.

In another independent test of the coupling scheme in
more realistic case of source terms present, random wal
were injected at the left hand side of the combined discr
continuous system, starting fromrp5rc50 everywhere.
Figure 5 shows the resulting density profiles, obtained
injecting one walker every 20 microscopic time steps, a
averaging the profiles from ten independent runs.

In this, as in former cases, analytical results are rea
available. Let us denote the source bys, which is the number

FIG. 4. Two relaxing Gaussian density profiles in a on
dimensional box, shown at various stages. The same system
plot scale as in Fig. 2 were used, and the discrete domain is
cated by the shaded area. The microscopic density data were
aged over a space ofW sites at each node position.

FIG. 5. Increasing density profiles in a one-dimensional b
The same system and plot scale as in Fig. 2 were used, and
discrete domain is indicated by the shaded area. Random wa
were slowly fed from the left, starting with zero density ever
where. Circles indicate the results of the hybrid simulation, av
aged over ten independent runs, and solid lines show the theore
prediction given in Eq.~5!. The microscopic density data were a
eraged over a space ofW sites at each node position.
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of injected particles per time step at the leftmost node po
tion (s may be less than 1!. Equation~1! then takes the form

]r

]t
5D“

2r12s~ t !d~x!, ~4!

whered is the Diracd function, and the factor 2 is due to th
reflecting boundary condition atx50 ~in the open-space sce
nario described by the diffusion equation, half the partic
escape to the left, in contrast to the simulated scenario!. Us-
ing the Green’s function of the diffusion equation, the so
tion to Eq.~4! is easily written down as

r~x,t !5E
0

t

dt8
1

A4pDt8
expS 2x2

4Dt8
D 2s~ t8!. ~5!

This expression was evaluated numerically to give the s
lines in Fig. 5. We note that in this figure the diffusion equ
tion is simultaneously solved in three different ways, and
agreement between the results is seen to be good.

Switching off the source, it was found that the dens
profile relaxed to a constant value everywhere in the hyb
system. In the final state the fluctuations in the discrete
main, were seen to propagate into the continuous dom
where they damped out as they progressed rightward.

B. Equilibrium fluctuations

In what sense does the continuum define a thermo
namic reservoir for the discrete system of random walke
Ideally, the continuum should behave as an extended par
system. However, in contrast to an extended particle syst
the continuum density does not fluctuate on microsco
time and length scales. While it would be possible to a
fluctuations to the continuum along the lines offluctuating
hydrodynamics@18#, in the following we will study the cou-
pling to the fluctuationless continuum.

The coupling scheme is characterized by two paramet
the ratioW of macroscopic to microscopic length scales, a
the ratio t of macroscopic to microscopic time scales. W
shall examine how the particle number fluctuations dep
on W andt. The particle flux densityj p that is imposed on
the continuum in theP→C region is given by the sum of the
particle currentsJi that characterize each of theW sites in the
underlying microscopic lattice,

j p5
1

W (
i 51

W

J̄i5
J̄

W
, ~6!

where the line denotes time averaging overt microscopic
time steps. The instantaneous net current across theP→C
region is J5R2L, whereR and L is the total number of
right- and left-moving random walkers, respectively, in t
region, andJi is the corresponding quantity on particle sitei.

Since the particle number fluctuations are a result of
fluctuations in j p , we need to computê j p

2&, where the
bracketŝ •••& denote an ensemble average. First we eva
ate^J2& in the equilibrium state when̂J&50. Denoting the
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particle number in theP→C region by NW5R1L, and
making use of̂ R&5^NW&/2, we can computêJ2& as

^J2&5^R222RL1L2&5^4R22NW
2 &

5 (
NW50

`

Q~NW! (
R50

NW

PN~R!~4R22N2!, ~7!

where the probability of findingNW random walkers in the
P→C region is given by the Poisson distribution

Q~NW!5
e2^NW&^NW&NW

NW!
, ~8!

and the probability thatR of theseNW random walkers are
moving right is given by the distribution

PNW
~R!5

1

2NW
S NW

R D , ~9!

where

S NW

R D 5
R!

NW! ~NW2R!!
~10!

is the binomial coefficient. We may then compute the curr
fluctuation

^J2&5 (
NW50

`

Q~NW! (
R50

NW

PNW
~R!~4R22NW

2 !

5 (
NW50

`

Q~NW!NW5^NW&. ~11!

It may be noted from the last equality that the same result
^J2& would have been obtained if we had assumed a fi
particle number̂ NW&, and computed the fluctuations due
the flipping between right and left moving particles only.
other words, the microcanonical and grand canonical
sembles produce the same current fluctuations. Now, in o
to obtain the fluctuations in the averaged current accordin
Eq. ~6!, we need to carry out a time average as well. But t
is an easy task since there is no difference between the i
pendent events that occur over time and those that occur
space. If in Eq.~11! the average is also taken over a tim
spant, we only need to replace the numberNW of particles
by NWt. Since a time average of the currentJ implies the
division by a factort, the total result of the averaging is
with Eq. ~6!,

^ j p
2&5

^NW&

tW2
5

rp

tW
. ~12!

We now assume that the continuum is transmitting
fluctuations imposed on its boundary region without dam
ing or distortion to theC→P region, where the boundar
flux of microscopic random walkers is imposed. Indeed,
diffusive current that enters the continuous domain atP
→C must create a corresponding flux further to the rig
06630
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However, the coarse nature of the continuum descriptio
likely to cause incorrect estimates of this current, since
imposed fluctuations cause relatively large density variati
among adjacent continuum nodes; this in turn leads to p
approximations for the flux derivatives. This discretizati
effect is viewed as the main source of discrepancies in w
follows. The ensemble-averaged fluctuations of the num
of random walkers, in response to the imposed bound
conditions, are given by the particle densities as

^dNW
2 &5E

V
dxdx8^drp~x,t !drp~x8,t !&; ~13!

the integrals run over the discrete domain of volumeV, and
drp denotes the continuum-induced deviation of the parti
densityrp from its mean value. To study the effect of fluc
tuations in theC→P region, the current densityj p imposed
by the fluctuating continuum is included in the coars
grained description of the discrete domain:

] trp~x,t !5“•@D“rp~x,t !1 j ~x,t !#. ~14!

Hererp is the number of particles per particle site, andj is
the imposed current which is assumed to obey the same
tistics as the averaged microscopic currentj p . However, we
now need its full correlationŝj c(x,t) j c(x8,0)&. Clearly there
are no equilibrium space correlations. Time correlatio
however, are caused by the numerical scheme, sincej c does
not change fort microscopic time steps. As a result of th
invariance and of Eq.~12!, we obtain

^ j ~x,t ! j ~x8,0!&5
r

t (
i 51

t

d~ t2t i !d~x2x8!, ~15!

where t i runs through integers from 1 tot. Equations~14!
and ~15! are fully analogous to corresponding equations
the theory of fluctuating hydrodynamics. From a theoreti
viewpoint it is interesting to note that it is possible to arri
at Eq.~15! by considering the entropy production associa
with the entropyS52*dxr(x)logr(x) to identify the ther-
modynamic fluxes and forces. From this result a fluctuati
dissipation theorem that coincides with Eq.~15! may be
derived.

Equation~14! may be solved by the introduction of th
Fourier transforms,

j k~ t !5
1

VE dx j~x,t !e2 ikx,

j ~x,t !5(
k

j k~ t !eikx, ~16!

where *dxei (k2k8)x5Vdkk8 , and V denotes the volume o
the discrete domain.

Upon the application of this transform, Eq.~14! takes the
form
2-5
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] trk52k2Drk1 ik j k , ~17!

which is easily solved to give

rk~ t !5 ikE
2`

t

dt8 j k~ t8!e2k2D(t2t8). ~18!

The Fourier transform of Eq.~15! gives

^ j k~ t ! j k8
* ~0!&5

r

WV
dkk8

1

t (
i 51

t

d~ t2t i !. ~19!

Equation~13! may now be solved by the combination
Eqs.~16!, ~18!, and~19!. This gives the somewhat involve
expression

^dN2&5E dxdx8(
kk8

E
2`

t

dt8E
2`

t

dt9k2^ j k~ t ! j k8
* ~0!&

3exp@2k2D~2t2t82t9!1 i ~kx2k8x8!#. ~20!

Using Eq.~19! we obtain

^dN2&5
r

WVE dxdx8(
k

1

t (
i 51

t E
2`

t

dt8

3k2exp@22k2D~ t2t81t i !1 ik~x2x8!#, ~21!

which upon time integration becomes

^dN2&5
r

2DWVE dxdx8(
k

1

t (
i 51

t

3exp@22k2Dti1 ik~x2x8!#. ~22!

The integrals overx andx8 are easily carried out. They giv

^dN2&5
rpV

2DW (
k

dk0

1

t (
i 51

t

e22k2Dti5
N

W
, ~23!

where in the last step we usedD51/2, N5rpV, and
(1/t)( i 51

t 151. Note that since in the end only thek50
contribution was projected out by thex integration,^dN2&
does not depend on the averaging timet. Physically this is
because the reduction in the current fluctuations, due to t
averaging, is exactly balanced by the increased correla
time of the fluctuating current.

The above formalism could easily be extended to d
with space-time correlations of the density. However, th
correlations will depend strongly on the underlying cons
vation laws in the system—in the present case, mass con
vation only. For this reason these will be of less interest fo
comparison with hydrodynamic systems@7#, in which mo-
mentum is also conserved. The result of Eq.~23! is expected
to be robust under changes of the dynamical rules.

It is of interest to note that in theW→1 limit Eq. ~23!
reduces tô dN2&5N, which is the fluctuation of a system i
touch with a real particle reservoir. This statistical mecha
cal result follows from the Poisson distribution of Eq.~8!.
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In order to compare predictions and measurements, a
quence of equilibrium simulations with a flat initial densi
profile was carried out for different ratiosW of macroscopic
to microscopic length scales. The hybrid system parame
were the same as those used in Sec. II, except that the
ticle system only occupied 1/8 of an entire system of wid
65W. Conservation of the total massMtot only holds to
within 1% in these simulations. The measurements of
fluctuations were corrected for this drift by measuring t
deviations in particle number from the instantaneous va
rather than initial value ofMtot/8. However, as is noted be
low, the drift still seems to have an effect. In Fig. 6 th
density is shown at 5 consecutive stages. As beforer is
obtained from the particle data atx/W<10. Note how the
fluctuations are damped in the continuum part of the syst
Care was taken so that the fluctuations did not significan
affect the right edge of the continuumx/W564, thus creat-
ing unwanted finite-size effects.

Figure 7 shows the fluctuations for differentW values on
a log-log scale. The fluctuations where ensemble avera
over 100 independent runs usingt510. The prediction@Eq.
~23!# gives log(̂dN2&/N)52logW. The gray dashed line
shows Eq.~23! with a correction term added to it, i.e.,

FIG. 6. The density profiles in the left half of the system me
sured at the different timest50, 2, 4, 6, 8, and 103104 particle
time steps. HereW520 t510, and the solid line shows the initia
state.

FIG. 7. The particle number fluctuation as a function of t
numberW of particle sites per continuum node. The black dash
line shows the theoretical result of Eq.~23!, and the gray dashed
line the result of Eq.~24!.
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^dN2&5
N

W
1aN2, ~24!

with a51025. While the main trend of the data in Fig. 7
to confirm the theoretical prediction, the discrepancies
tween the measurements of Fig. 7 and the theory of Eq.~23!
occur at small and largeW, and to a lesser extent at interm
diate values.

The theory assumes that particle and continuum flu
coincide for all wavelengths and frequencies. This assu
tion is expected to work better whenW is large and some o
the rapid, short wavelength behavior of the particle system
averaged away. This may explain the smallW departure be-
tween theory and measurement. AtW51 the noise level of
the continuum boundary condition made the Cran
Nicholson solver unstable. HenceW52 is the smallest value
shown.

Only the integer part of the fluxD“r is imposed on the
particle system. This error source is likely to be visible at
W, and most so whenW is large. For the largestW it also
appears that the small drift in particle number has an eff
Assuming that the drift inN is proportional toN, we obtain
an N2 contribution todN2 which is given in Eq.~24!. This
equation seems to give a good fit to the largeW data, indi-
cating that the crossover behavior atW514 is due to the
imperfect mass conservation.
as

. C
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IV. CONCLUSIONS

In principle, the presented coupling scheme can be
plied to any pair of particle and field descriptions, in a
dimension. Here we have studied both the equilibrium a
nonequilibrium behaviors of a one-dimensional diffusive h
brid system. The coupling worked well after the introducti
of a particle based modification for the computation of t
continuum density gradient in the overlap region.

The nonequilibrium behavior, which is globally describe
by the diffusion equation, agreed well both with consisten
checks and analytical predictions. In the equilibrium case
studied the particle fluctuations in order to establish the
tent to which the continuous domain played the role of a w
defined thermodynamic reservoir. It was found theoretica
and partly confirmed by simulations, that the role of the co
tinuum approximates the role of a thermodynamic reserv
in the smallW limit, while it completely suppresses fluctua
tions in the largeW limit.
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