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Coupling particles and fields in a diffusive hybrid model
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A general scheme to patch together discrete and continuous descriptions of diffusion within the same
physical space is studied. In the discrete description, diffusion is described by microscopic random walkers on
a lattice; in the continuous description, diffusion is described through the macroscopic diffusion equation. The
coupling scheme is based on the mutual exchange of mass flux across the discrete-continuous interface.
Detailed tests of the scheme, coupling particle, and field descriptions are particularly illustrative for the
diffusion problem. Both the nonequilibrium transport behavior and the equilibrium fluctuations of the com-
bined discrete-continuous system are in agreement with theoretical predictions.
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[. INTRODUCTION duce a simple coupling scheme for this purpose in the case of
diffusion. It represents a highly simplified version of the hy-
The diffusion equation is at the heart of so many physicadrodynamic coupling scheme introduced in Rigf]. Con-
descriptions that it is hard to list them all. Physical quantitiestrary to existing coupling scheme8-10], the present
such as heat in a solid, momentum in a fluid, or a pollutant irscheme and that in Ref7], are based entirely on the ex-
a gas may all be described by the diffusion equation. Thehange ofluxes which is the most direct and general way to
same can be said for the probability of finding a grain ofenforce the pertinent conservation laws.
pollen undergoing Brownian motion in space. In fact, all Diffusive processes may require atomistic or discrete de-
types of random microscopic motion with a finite step lengthscriptions in cases where fluctuations are important, such as
and a finite correlation time satisfy the diffusion equation inin small scale deposition-dissolution processes or when gra-
the macroscopic limit. In that limit, i.e., on spatial scalesdients become large and Fick’s law breaks down. More gen-
larger than the correlation length of the underlying micro-erally, fluctuations arise naturally whenever a particle de-
scopic processes, one may expand the current of the relevastription is required. However, in existing continuum-
guantity in a series of the density gradient of the same quarparticle hybrid model§8—10], the focus is on theverage
tity to obtain Fick’s law. Then the diffusion equation follows behavior. The main virtue of the present paper is an analysis
as a statement of conservation of the quantity at hand. of the fluctuations. The leading question is to what extent the
It is precisely when the physical processes produce a&ontinuum acts as a statistical mechanical reservoir for the
structure at the scale of the microscopic correlation lengtlparticle system. We quantify the answer to this question by
that one runs into trouble with the diffusion equation. In thismeans of both analytical arguments and measurements, and
case there might not exist a simple macroscopic descriptionye demonstrate that the agreement between the two is rea-
and if it does, it will not be linear in the density gradient. For sonable. The main result is that, depending on the coupling
concreteness one may think of the heat transport around ta the continuum, the size of the particle fluctuations inter-
fracture formed within a solid under stress. Here a heapolates between those of an open system and those of a
source (the propagating fractuyeis localized over a few closed system. However, in order to make an analysis of the
atomic lengths, and thus is singular on the macroscale. Whil8uctuatingbehavior of the model meaningful, we first check
the diffusion equation in this case may still describe thethat it has the correcaveragebehavior. This is done in a
large-scale transport of heat, it does not describe the pattesequence of simple test cases in the beginning of the paper.
of local transport. Local heat flow may, however, influence Interestingly, hybrid descriptions may also be useful in the
the further growth of the fracture, and thus be of interest. opposite application where particles are used in the low reso-
Indeed, there exist processes on macroscopic length scalkgion region and a continuum description is used where high
that, for fundamental reasons, cannot be described by comesolution is required. This is the case in a recent work by
tinuum theory; they must be treated on the discrete atomistiPlapp and Karmg11l], who studied dendritic growth on
scale. Famous examples of such processes include the maseales where fluctuations are not considered. The coupling
ing contact line between two immiscible liquids moving on ascheme used in this study derives the particle boundary con-
substratd 1], the breakup and merging of fluid dropl¢g, dition from the continuum flux, whereas the continuum
strong shear localization, dynamic melting proce$8ésand  boundary condition is derived from the partictiensity
the evolution of a fracture tip4—6]. For a modeling of such Hence flux continuity is not obvious from this scheme.
processes it is of fundamental interest to combine a local and Particle models that seek to bridge the gap between mi-
detailed particle description with a continuous field descrip-croscopic and macroscopic scales do exist—most notably the
tion of greater numerical economy. In this paper we intro-hydrodynamic models known as dissipative particle dynam-
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01 2 3 4 5 6 7 8 to the above diffusion equation to obtain a fully consistent
|___{___|__I ] picture. It is clearly possible to do this along the lines of
) 4\ —— fluctuating hydrodynamickl8]. However, the main effect of

particle flux \% DV p the continuum on the particle number fluctuations is linked
i s o to the averaging of the particles that is needed in the cou-
pling region. Moreover, the general idea is to link a fine scale
description(the particle$ to a region of coarser scale where
Huctuations in general play a less important role. This was
the view taken in previous studies

The basic idea of the coupling scheme is to impose the
flux of the particle system as a boundary condition on the

ics[12,13. Even though these models have recently evolveOntinuum at one location, and to do the reverse at another
to include an adaptive range of particle scdl4,15, they location. This is illustrated in a particular case in Fig. 1,
remain mesoscopic in the sense that their particles are coard§1€re an overlap zone is defined between sites 4 and 6. At

grained representatives of the underlying microdynamics. Sit¢ 4 the particle flux is imposed on the continuum, and at
the rightmost site on the particle system the flux of the con-

tinuum system is imposed on the particle system. Sites 0—3
are represented by the particle system only, and the con-

To describe a diffusive process on a microscopic scale, whuum equation is not updated there.
consider a set of random walkers moving on the sites of a Figure 1 shows where these fluxes are imposed. The mass
one-dimensional lattice. The random walkers move withflux DVp in the continuum, wheré&/p is evaluated from
equal probability to the left or the right, hopping from one sites 5 and 6, is imposed as a source term on the second
site to a neighboring site during each time step. This discrete@utermost site of the particle lattio@t the outermost site
microscopic description is coupled to a continuous, macrowhich is not shown the particles just bounce back to the. left
scopic description, obtained by solving a discretized version Once the continuum flux is computed it is imposed as a
of the diffusion equation particle source which is constant over th@article updates.

Then, at the last of these updates, the particle flpixs
dpe ) averaged oveWV sites, and used to define the source on the
ot DVpc (1) continuum. More precisep V p. particles are added to the
particle system every update. In doing tHisY p. is rounded
on a one-dimensional array of nodes. Hggds the density  to the closest integer.
of random walkers or particles on a continuum node, Bnd  Correspondingly, the continuum receives a mpgss by
is the macroscopic diffusion constant. The two description@dding this value ap. at the site of the leftmost arrow of
overlap to some extent, in the sense that some of the cofFig. 1, i.e., site 4. The particle fluj, is measured simply as
tinuum nodes and some sites of the particle lattice cover théhe number of right moving particles minus the number of
same region of space. This is shown in Fig. 1. One conleft moving particles at the given time.
tinuum node corresponds W> 1 lattice sites of unit length ~ Of course, the flux boundary condition on the continuum
on which the particles move. As units we shall take the latcould also have been imposed as a condition on the concen-
tice constant of the particle lattice and the time step of thdration gradient. However, since this condition represents a
particles, i.e., every particle moves a unit length in a unithoise source that imposes variations on all wavelengths
time. The lattice constant of the continuum lattioe which ~ down to the lattice scale, it does not conserve miss
we discretize the diffusion equatipis thereforeW, which is  integrated concentratipnto a high accuracy. This was
the number of particle step lengths per continuum node. Thehecked in independent simulations using the continuum
density p.. is defined on the continuum nodes, and the parequation solver and a random boundary condition. In these
ticle densitypp is the number of partides per site on the S|mulqt|0ns the |mpOS|t|on of a_sourc_e_ term conserves m_ass
more fine grained lattice. In equi“brium the average$9f to a _hlgher accuracy than the Imposition of a concentration
andp. will be equal. gradient.

The general idea of particle-continuum hybrid models is As usual in the numerical treatment of differential equa-
to resolve finer space and time scales in the particle systefiPns, the gradient of the density must be expressed as a
than in the continuum, which thus is taken to represent &lifference across nodes. In particular, to express the con-
coarse grained description of the particle system. One tim8nuum flux density the difference gradient
step in the iteration of Eq.l) thus corresponds t@ micro-
scopic time steps. Since particle time steps are taken to have
a unit length, the time step of E¢L) is simply 7. In fact a Vo
main virtue of the coupling scheme is that it allows this
separation of both the space and time scales of the two
domains. where x5 and xg are shown in the figure, should be used.

Since the particle system has intrinsic fluctuations itNote that since the site of the particle source is located right
would appear that one would need to add a fluctuating termbetweerxs andxg the difference expression above is really a

andW=6 particle sites per continuum site. The particle systEjm
is coupled to the continuurfC) at the location of the right arrow,
and the continuum to the particles at the left arrow.

Il. MODEL

- pc(Xe) — pc(Xs)

W @
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centereddifference. The discrete value &p. then defines 20 : —

the flux density at the boundary of the continuous domain. Sy
However, Eq.(2) does not prevent discontinuities at the ¢ B

discrete-continuous interface. Indeed, a configuration with [T e

,
Q10 {fTeoe Ty ]

pp=const everywhere in the discrete domain, apd

=const everywhere in the continuous domain, would lead to EFIRTIESERE
ishi d f # pe. Equilibration | : R

vanishing averaged fluxes, even fgy# p.. Equilibration is s \

. . : 5% BT
enforced if a hybrid gradier? ' of the form gggfg’fgif J % \Qééa\gﬂgg
Coegog a \qznzzox
o P9 = pp(Xs) 3 0 ke el
Pe W 0 10 20 30
is employed to define the flUlRV p. into the particle system. x/W

In Eq. (3), the mgcrosc.oplc con_tlnuum (_:IenS|tyreEpIaC(_ad_by FIG. 2. Arelaxing Gaussian density profile in a one-dimensional
the correspo_ndlng microscopic density characterizing th%OX of size 32V, shown at six different times=0, 6, 12, 18, 24.

nodexs. The imposed flux of random walkers, bas-ed on Eq'and 30x10° particle time steps. The particle domain covers the
(3), enforces that, on averagg,=pc at the discrete- |eftmostx/W=10 positions. The data were averaged over 100 in-

continuous interface. When the coupling scheme is appliegependent runs, and the particle density data were averaged over a
to a physical system involving both mass and momentungpace ofw sites at each node position.

transpor{ 7], one may do without this device and use &),

as density mismatch at the interface will lead to momentum . , . .
and mass flux exchange and equilibration by default. 7=50 (in units of microscopic time stepsand each run was

As an illustration of the fact that continuum descriptions ©Ver 30.000 particle time steps. A Gaussian density profile
generally capture only the large scale behavior of the particl/as imposed initially, and left to relax. Averaging over an
system, note that the average particle evolution is not exactignsemble of 100 independent runs, the density profile runs
described by Eq(1). Equation(1) only contains the lowest continuously across the discrete-continuous interface, and
order in the gradient terms. In fact, it is generally possible—the microscopic fluctuations in the discrete domain are
for instance by applying a simple version of the standardbarely visible. Note that the microscopic densities of every
Chapman-Enskog expansion technigli6,17—to show W sites were averaged to yield one data point, corresponding
that the diffusion equation contains correction terms ofto one node position.
higher order inv2, that become important when density gra-  Figure 3 shows the same data as Fig. 2 but only the dif-
dients are large. When gradients are small on the latticéerence A p(x/W) = p(x/W) —p(32—x/W). Each run con-
scale, or the scale of the mean free path, Fick's law is genserved total mass within 0.5%. The main particle-continuum

erally valid to an excellent approximation. discontinuity is present in the initial configuration. The par-
ticle system was initialized with steps of widW and con-
IIl. SIMULATIONS AND RESULTS stant density.

_ _ _ o For comparison with the case where mass flows out of,

The simulations focus on two main questiofi.Is the  and not into, the particle system, Fig. 4 shows density pro-
time-dependent mass transport across the discrete-continuogigs measured during a single run, using the same combined
interface continuous and smootfif) In what sense does the gjiscrete-continuous system. Two Gaussian profiles, centered
continuum domain represent a continued thermodynamigy the extreme ends of the domains, were imposed initially

bath for the discrete system of random walkers? and left to relax. Here the microscopic fluctuations are
If not stated otherwisé/V=20 lattice sites were taken to

correspond to one continuum node, and between five and 20

random walkers were employed per lattice site. The con- 0.0 r——= -
tinuum description was evolved by means of a Cranck- 5 e
Nicholson finite difference scheme, using the diffusion con- s
stantD=0.5 lattice constafttime step.D is then equal to a ¢ S S
the diffusivity of a single random walker. < Y

A. Transport properties and the continuity of the discrete- Y
continuous interface

Is the coupling mechanism able to propagate the diffusive 0 5 10 15
current continuously across the discrete-continuous inter- x/W
face? Figure 2 shows results from simulations intended to
test the transport properties of the hybrid model. A discrete FIG. 3. The differencel p(x/W) = p(x/W) — p(32—x/W) as a
domain containing 210 sites was patched together with gunction of x, where p(x) is shown in Fig. 2. The sequence of
continuum extending on 33 nodes, also counting the leftmostymbols®, O, ¢, A, +, andO corresponds to the time sequence
sites that are not updated. The continuum time step was sette:0, 6, 12, 18, 24, and 301C° particle time steps.
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20 y of injected particles per time step at the leftmost node posi-
S, tion (s may be less than)1Equation(1) then takes the form
» 2P DV2p+ 25(1)8(x) @
Qo 47 Jt P '
335 °§oowog§%5 J whered is the Diracé function, and the factor 2 is due to the

o ©0-0009

~a
°

o o

%0000

}{/

reflecting boundary condition at&=0 (in the open-space sce-

0 s e . nario described by the diffusion equation, half the particles
10 20 30 escape to the left, in contrast to the simulated scepdds-
/W ing the Green’s function of the diffusion equation, the solu-

tion to Eq.(4) is easily written down as
FIG. 4. Two relaxing Gaussian density profiles in a one-

dimensional box, shown at various stages. The same system and
plot scale as in Fig. 2 were used, and the discrete domain is indi-
cated by the shaded area. The microscopic density data were aver-
aged over a space 0¥ sites at each node position.

2

t 1
X,t zf dt’ ex
PU= | d T p(4Dt'

25(t'). (5)

- . ' This expression was evaluated numerically to give the solid

cl_early_V|S|bIe, In _sharp contrast to the smooth profile Ob'Iines in Fig. 5. We note that in this figure the diffusion equa-

tained in the continuous domam_. . . ... tion is simultaneously solved in three different ways, and the
In the S|mulat|ons illustrated in Figs. 2 and 4, the initial agreement between the results is seen to be good.

state was symmetric around the center of the hybrid system, Switching off the source, it was found that the density

eprofile relaxed to a constant value everywhere in the hybrid

. system. In the final state the fluctuations in the discrete do-
space, should preserve symmetry. The coupling scheme m ain, were seen to propagate into the continuous domain
be tested by directly comparing the left- and right-hand por- ! ; '
tions of the graph. These were indeed found to evolve sym\fvhere they damped out as they progressed rightward.
metrically, up to the effect of microscopic fluctuations. As an

independent check, it was verified that the microscopic den-
sity profile of random walkers alone indeed evolved with @ |n what sense does the continuum define a thermody-
diffusivity of D=0.5. namic reservoir for the discrete system of random walkers?

In another independent test of the coupling scheme in thegeally, the continuum should behave as an extended particle
more realistic case of source terms present, random walkegystem. However, in contrast to an extended particle system,
were injected at the left hand side of the combined discretethe continuum density does not fluctuate on microscopic

Hence density profiles, which initially were symmetric in

B. Equilibrium fluctuations

continuous system, starting from,=p.=0 everywhere.

time and length scales. While it would be possible to add

Figure 5 shows the resulting density profiles, obtained byfluctuations to the continuum along the lines fhfctuating
injecting one walker every 20 microscopic time steps, anchydrodynamic$18], in the following we will study the cou-

averaging the profiles from ten independent runs.

pling to the fluctuationless continuum.

In this, as in former cases, analytical results are readily The coupling scheme is characterized by two parameters:

available. Let us denote the sourcesyvhich is the number

FIG. 5. Increasing density profiles in a one-dimensional box
The same system and plot scale as in Fig. 2 were used, and t

discrete domain is indicated by the shaded area. Random walker.

were slowly fed from the left, starting with zero density every-

the ratioW of macroscopic to microscopic length scales, and
the ratio 7 of macroscopic to microscopic time scales. We
shall examine how the particle number fluctuations depend
on W and 7. The particle flux density, that is imposed on
the continuum in thé— C region is given by the sum of the
particle currentd; that characterize each of tNeésites in the
underlying microscopic lattice,

AN |
= 2 d=w (©®)
where the line denotes time averaging owemicroscopic
time steps. The instantaneous net current acros$theéC
region isJ=R-L, whereR and L is the total number of
|seght— and left-moving random walkers, respectively, in the
region, andJ; is the corresponding quantity on particle Site
Since the particle number fluctuations are a result of the

where. Circles indicate the results of the hybrid simulation, aver- ) e —
aged over ten independent runs, and solid lines show the theoreticHCtuations inj,, we need to computgjy), where the
prediction given in Eq(5). The microscopic density data were av- brackets(- - -) denote an ensemble average. First we evalu-
eraged over a space W sites at each node position. ate(J?) in the equilibrium state whefJ)=0. Denoting the
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particle number in theP—C region by Ny=R+L, and However, the coarse nature of the continuum description is

making use ofR)=(Ny)/2, we can computéJ?) as likely to cause incorrect estimates of this current, since the
) ) 5 - imposed fluctuations cause relatively large density variations
(I =(R°=2RL+L%)=(4R"—Nj) among adjacent continuum nodes; this in turn leads to poor
% Ny approximations for the flux derivatives. This discretization
_ N P (R)(4R2—N?), 7 effect is viewed as the main source of dls_,crepanues in what
NWE: QA W)REO n(R)( ) @) follows. The ensemble-averaged fluctuations of the number

- o _ of random walkers, in response to the imposed boundary
where the probability of finding\,y random walkers in the conditions, are given by the particle densities as
P— C region is given by the Poisson distribution

e~ (NW(NyNw @® (SNG) = fvdxdx'(ﬁpp(X,t)5pp(X’.t)>; (13
No!

Q(Nw)=
and the probability thaR of theseN,y random walkers are the integrals run over the discrete domain of voluvheand
moving right is given by the distribution dp, denotes the continuum-induced deviation of the particle

densityp, from its mean value. To study the effect of fluc-

1 (Nw tuations in theC— P region, the current density, imposed
P R)= ZTW R/’ © by the fluctuating continuum is included in the coarse-
grained description of the discrete domain:
where
N “ pp(X,1)=V-[DVpp(x,1) +j(x,1)]. (14
W H
( R )_ Nw! (Nyw—R)! (10 Here p,, is the number of particles per particle site, gnis

. o o the imposed current which is assumed to obey the same sta-
is the binomial coefficient. We may then compute the currentistics as the averaged microscopic Currﬁnt However, we

fluctuation now need its full correlation§ .(x,t)j(x’,0)). Clearly there
- Ny are no equilibrium space correlations. Time correlations,
2\ _ 2_ N2 however, are caused by the numerical scheme, gindees
(9 NWE:O Q(NW)RZO PNW(R)(4R Niw) not change forr microscopic time steps. As a result of this
. invariance and of Eq(12), we obtain
= > Q(Nw)Nw=(Ny). (12)
Ny=0

(DX 0)=23 st-t)sx-x), (19
It may be noted from the last equality that the same result for Ti=l
(J?) would have been obtained if we had assumed a fixed . )
particle numbexNy,), and computed the fluctuations due to Wheret; runs through integers from 1 te. Equations(14)

the flipping between right and left moving particles only. In @d (15) are fully analogous to corresponding equations of
other words, the microcanonical and grand canonical enthe theory of fluctuating hydrodynamics. From a theoretical
sembles produce the same current fluctuations. Now, in ordéfi€wpoint it is interesting to note that it is possible to arrive
to obtain the fluctuations in the averaged current according t8t Ed-(15) by considering the entropy production associated
Eq. (6), we need to carry out a time average as well. But thigVith the entropyS=— [dxp(x)log p(x) to identify the ther-

is an easy task since there is no difference between the indgodynamic fluxes and forces. From this result a fluctuation-
pendent events that occur over time and those that occur ovéissipation theorem that coincides with EQ.5) may be
space. If in Eq.(11) the average is also taken over a time derived. _ .

spant, we only need to replace the numbéy, of particles Equat|on(14) may be solved by the introduction of the
by Ny 7. Since a time average of the currehtmplies the ~ Fourier transforms,

division by a factorr, the total result of the averaging is, L
with Eq. (6), ()= VJ dxj(x,tye ik,
(Nw) _ Pp
W2 TW

(j5y= (12)

jxD=2 je", (16)
We now assume that the continuum is transmitting the K
fluctuations imposed on its boundary region without damp-
ing or distortion to theC— P region, where the boundary where [dxd* K)*=V§,,,, andV denotes the volume of
flux of microscopic random walkers is imposed. Indeed, thehe discrete domain.

diffusive current that enters the continuous domainPat Upon the application of this transform, E@d.4) takes the
—C must create a corresponding flux further to the right.form
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dipi=—K*Dpitikjy, 17
which is easily solved to give
t ’

pk(t)=ikf dt'j,(t")e K-t (18)
The Fourier transform of Eq15) gives

N ET ' |

(I(D]j e (0))= Wy kK 24 o(t—t)). (19 20 30
x/'W

Equation(13) may now be solved by the combination of
Egs.(16), (18), and(19). This gives the somewhat involved
expression

FIG. 6. The density profiles in the left half of the system mea-
sured at the different times=0, 2, 4, 6, 8, and 18 10* particle
time steps. Her&/=20 7= 10, and the solid line shows the initial
state.

t t

(5N2>=J dxdx >, dt’J dt"k?(ji(1)j 5. (0))
kk’ - -

) D L In order to compare predictions and measurements, a se-

xexd —k°D(2t—t'—t")+i(kx—k’x")]. (20 guence of equilibrium simulations with a flat initial density

profile was carried out for different ratid4 of macroscopic

to microscopic length scales. The hybrid system parameters

were the same as those used in Sec. Il, except that the par-

ticle system only occupied 1/8 of an entire system of width

65W. Conservation of the total madd,,; only holds to

within 1% in these simulations. The measurements of the

Using Eq.(19) we obtain

ZILJ Lo [ gr
(N =y dxdx’%T; dt

X 2 _ 2 —t' 4+t ) +i — ! _ K X .
Keex =2k D(t=t"+ 1) +ik(x=x)], @) fluctuations were corrected for this drift by measuring the
which upon time integration becomes deviations in particle number from the instantaneous value
rather than initial value oM,,/8. However, as is noted be-
5 p 1 low, the drift still seems to have an effect. In Fig. 6 the
(ON%) = 2DWVI dXdsz: P Z’l dens:ity is shown at 5.consecutive stages. As beforis
obtained from the particle data atW=10. Note how the
x ex] — 2k2Dt; +ik(x—x")]. (22)  fluctuations are damped in the continuum part of the system.

Care was taken so that the fluctuations did not significantly
affect the right edge of the continuuxdiW= 64, thus creat-
ing unwanted finite-size effects.

Figure 7 shows the fluctuations for differeitvalues on
a log-log scale. The fluctuations where ensemble averaged
over 100 independent runs usimg 10. The predictiofEq.
(23)] gives log(oN?/N)=—logW. The gray dashed line
shows Eq.(23) with a correction term added to it, i.e.,

The integrals ovek andx’ are easily carried out. They give

2y — PpV E S —2k2Dt-:E
(ON%) 2DW2k akomgle w

(23

where in the last step we used=1/2, N=p,V, and
(1/7)={_,1=1. Note that since in the end only the=0
contribution was projected out by theintegration,{ 5SN?)
does not depend on the averaging timePhysically this is
because the reduction in the current fluctuations, due to time 0.0 —
averaging, is exactly balanced by the increased correlation N e
time of the fluctuating current. N
The above formalism could easily be extended to deal -0.5 ) .
with space-time correlations of the density. However, these

correlations will depend strongly on the underlying conser-
vation laws in the system—in the present case, mass conser-
vation only. For this reason these will be of less interest for a
comparison with hydrodynamic systerfig], in which mo-

=
(=]

|
—
W

log10(<8N>2/N )
A

00

0.5

1.0

1.5

mentum is also conserved. The result of E2B) is expected
to be robust under changes of the dynamical rules.

It is of interest to note that in thev—1 limit Eq. (23) FIG. 7. The particle number fluctuation as a function of the
reduces tq SN?)=N, which is the fluctuation of a system in numberw of particle sites per continuum node. The black dashed
touch with a real particle reservoir. This statistical mechanidine shows the theoretical result of E(3), and the gray dashed
cal result follows from the Poisson distribution of ). line the result of Eq(24).

log (W)
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IV. CONCLUSIONS

N
(6N?)= — + aN?, (24) o _
W In principle, the presented coupling scheme can be ap-

. g . _ o . plied to any pair of particle and field descriptions, in any
with a=10"". While the main trend of the data in Fig. 7 iS gimension. Here we have studied both the equilibrium and
to confirm the theoretical preQ|ct|on, the discrepancies behonequilibrium behaviors of a one-dimensional diffusive hy-
tween the measurements of Fig. 7 and the theory ofER).  pig system. The coupling worked well after the introduction
occur at small and large/, and to a lesser extent at interme- ot 5 particle based modification for the computation of the
diate values. _ _ continuum density gradient in the overlap region.

The theory assumes that particle and continuum fluxes the nonequilibrium behavior, which is globally described
coincide for all wavelengths and frequencies. This assUmpyy the diffusion equation, agreed well both with consistency

tion is expected to work better whed is large and some of = hecks and analytical predictions. In the equilibrium case we
the rapid, short wavelength behavior of the particle system igyied the particle fluctuations in order to establish the ex-

averaged away. This may explain the smafldeparture be-  ant 1o which the continuous domain played the role of a well
tween theory and measurement. Wt=1 the noise level of qefined thermodynamic reservoir. It was found theoretically,
the continuum boundary condition made the Cranckyng partly confirmed by simulations, that the role of the con-
Nicholson solver unstable. Hen¢=2 is the smallest value tinuum approximates the role of a thermodynamic reservoir

shown. _ o in the smallW limit, while it completely suppresses fluctua-
Only the integer part of the flubVp is imposed on the tjons in the largew limit.

particle system. This error source is likely to be visible at all
W, and most so whelV is large. For the largedd it also
appears that the small drift in particle number has an effect.
Assuming that the drift iflN is proportional toN, we obtain

an N? contribution to5N? which is given in Eq.(24). This G.W. was partially supported by Tel Aviv University and
equation seems to give a good fit to the laWyedata, indi- by Schweizerischer Nationalfonds. This research was also
cating that the crossover behavior \W=14 is due to the supported by the research contract 462000-98/0 between
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